Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Appl Microbiol ; 133(6): 3534-3545, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2001658

ABSTRACT

INTRODUCTION: Quantitative reverse transcription PCR (RT-qPCR) is the leading tool to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given that it will almost certainly continue to coexist with other respiratory viruses in the coming years, our study aimed to design a multiplex PCR system not affected by supplier outages and with reduced cost compared to the existing commercially available kits. METHODS AND RESULTS: In this study, combinations of four primers/probe sets were used to construct a flexible RT-qPCR assay which is capable of discriminating between SARS-CoV-2 and the seasonal human coronavirus HCoV-OC43, or even influenza A virus. Additionally, the human RPP30 gene was used as an internal control. To demonstrate the robustness of the assay, it was applied to a collection of 150 clinical samples. The results showed 100% sensitivity and specificity compared to the automatized system used at the hospital and were better when indeterminate samples were analysed. CONCLUSIONS: This study provides an efficient method for the simultaneous detection of SARS-CoV-2, HCoV-OC43 and influenza A virus, and its efficacy has been tested on clinical samples showing outstanding results. SIGNIFICANCE AND IMPACT OF THE STUDY: The multiplex RT-qPCR design offers an accessible and economical alternative to commercial detection kits for hospitals and laboratories with limited economic resources or facing situations of supply shortage.


Subject(s)
COVID-19 , Influenza A virus , Humans , SARS-CoV-2/genetics , Multiplex Polymerase Chain Reaction/methods , Influenza A virus/genetics , COVID-19/diagnosis , Sensitivity and Specificity , Nasopharynx
SELECTION OF CITATIONS
SEARCH DETAIL